If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25s^2-20s-4=0
a = 25; b = -20; c = -4;
Δ = b2-4ac
Δ = -202-4·25·(-4)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{2}}{2*25}=\frac{20-20\sqrt{2}}{50} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{2}}{2*25}=\frac{20+20\sqrt{2}}{50} $
| 1/12(4x+39)=1/4(2x+9) | | -x+3x=-8x-1 | | 0=x^2-25x-10350 | | 8x+4-4x=5x-2 | | 6w-2/3-2w-4/3=-2 | | 6x-(4x-15)=38 | | 0x+0=1 | | 5d^2-42d+16=0 | | 0.35(30)+0.05n=0.20(30+n) | | 4x+2=1/2+17 | | 0.4(3.2x+2)+-x=2x+1.8 | | 11k+9.5=k+13 | | 12x5xxX=200 | | 180=105+(12x+15) | | 0.45(30)+0.15b=0.25(30+b) | | 180=75+(6y-27) | | 0.02y+0.3=0.12y-10.2 | | y+0.40y=30 | | -2(x+4)+5x=-5 | | 180=128+(x-15) | | x+60=100 | | x+24+3x+24=180 | | x+22=60 | | -1/4z-5/16=-3/8z+1/4 | | 27^-x-3=81 | | 4.9t^2-34t-180=0 | | 2(x+4)+5x=-5 | | x-22=68 | | u/5+17=28 | | 2(4x-4)=42 | | 5x-10=7x-16 | | .75=y-1.6 |